CDF/D0: summary of expectations in long term Guillelmo Gomez-Ceballos (M.I.T.)

- Prospects **VERY** preliminary (and in too few days!!!)
- D0's reach will be comparable to CDF's for most of the items
 - Luminosity:
 - Very unpredictable (2-4 fb⁻¹)
 - We will use 2 and 3.5 fb⁻¹ as benchmarks
 - Difficult to know if it is possible to use the same B triggers at higher luminosity
 - Trigger, reconstruction and tagging performance:
 - We expect to make several improvements (see my talk yesterday)
 - "Minimal" correction factor ~2.2

$B_s \rightarrow \Box^+\Box^-(\text{limits also in } B_d)$:

- D0: 1.3 10⁻⁸ (2 fb⁻¹) and 0.6 10⁻⁸ (4 fb⁻¹)
- CDF:
 - Optimization analysis for 0.5 fb⁻¹ (~0.5 10⁻⁶), it is expected better performance
 - ~ 10^{-7} 10^{-8} (2 fb⁻¹) at 95% C.L.

B_s mixing:

- •D0: 2 fb⁻¹, $\Box m_s = 15$ and $\Box_t = 150$ fs
 - Please, be careful with these numbers!
 - Single muon trigger:
 - •Bs \rightarrow D_s \square X (3.5 \square)
 - •Bs \rightarrow D_s e X (3.5 \square)
 - •Bs \rightarrow D_s \square (2.2 \square), \square in the other side
 - Dimuon trigger:
 - Bs \rightarrow D_s \square X (3.0 \square), \square in the other side
- CDF: see my talk yesterday
 - $\square m_s = 15, 2 \square \text{ limit with } 0.5 \text{ fb}^{-1}$
 - \Box m_s = 18, discovery with 1.7 fb⁻¹
 - $\square m_s = 24$, discovery with 3.2 fb⁻¹

•
$$\square$$
 and \square using B \rightarrow hh: $A_{CP} = A_{CP}^{dir} \cos(\square mt) + A_{CP}^{mix} \sin(\square mt)$

- Studies are in progress
- A lot of activity in these channels

Mede	Yield 2 fb ¹	Yield 3.5 fb ¹
$B_d \to K T_c$	6700	11,725
$\mathcal{B}_{\mathscr{E}} o \imath$	1770	3097
$B_s \to KK$	4040	7070
$B_* \to K\pi$	1070	1870

- \square using \square : no competitive results due to \square^0 in the final state
- ☐ using ☐☐: no studied yet
- Yields for B $\rightarrow \square\square K^*$: ~500 events for 2 fb⁻¹
- \square/\square (\square_s) using J/ \square : uncertainty ~ 0.07 (0.055) for 2 (3.5) fb⁻¹
- \Box using \Box →DK and B_s → D_s K:
 - Cabibbo suppressed modes not measured yet, but included in the fits for $[] \rightarrow D[]$ and $B_s \rightarrow D_s[]$ BR measurements (see my talk yesterday)
 - Expected yields (assuming BR($\square \rightarrow D\square$) / BR($\square \rightarrow DK$)~8%):

Mode	Yield in 2 fb ^{−1}	Yield in 3.5 fb−1
$h^{\perp} \to U^0 \pi, U^0 \to K \pi$	48,000	84,000
$\mathcal{B}^{\pm} \to \overline{\mathcal{D}}^0 K, \overline{\mathcal{D}}^0 \to K\pi$	3990	6980
$b^{\perp} \to \overline{D}^{\circ} K, (\overline{D}^{\circ} \to KK + \overline{D}^{\circ} \to \pi\pi)$	520	910
$B_1 \to D_1 r_n D_2 \to \infty$	3200	5600
$B_s \to B_s K, B_s \to \phi T.$	256	44 8